
Weather Station with Real-Time Data 
Visualization 

Linh Nguyen 

Introduction 

Weather stations play a significant role in climate change research, monitoring, and 
mitigation efforts. Data collected on temperature, humidity, and pressure is invaluable for 
climate scientists studying long-term climate trends and predicting future climate 
scenarios. The objective of this project is to develop a portable weather station that 
collects and analyzes weather data, which can then be transmitted to a base station for 
real-time weather data visualization. Both the weather station and the base station will 
utilize the Programmable System-on-Chip (PSoC) platform as their main architecture. 
This platform will facilitate the processing of data collected from digital sensors and 
interpretation of the data to be displayed on a TFT LCD display. 

The final product consists of a Weather Station [PSoC Stick] that collects temperature 
and humidity data through the DHT11 sensor that communicates wirelessly to the Base 
Station [PSoC Big Board] through the HC-05 Bluetooth Module. The Base Station is 
connected to a TFT display that displays both the raw temperature and humidity readings 
from the Weather Station and the graph of how the weather data has changed overtime. 

 

 

 

 



Schematic 

 

 

 

 

 

 

 

 

 



Weather Station 

 

Base Station 

 

 

 

 

 

 

 

 



Temperature and Humidity Sensor [DHT11] 

Introduction of DHT11 

In the original proposal, the BME280 was the main sensor for obtaining readings for 
temperature, humidity, and pressure; however, it was difficult to read values and I 
supplied the sensor more voltage than it could handle, so I switched to a DHT11 sensor 
instead, which collects values for temperature and humidity. 

The Temperature and Humidity readings of the Weather Station use the DHT11 sensor 
complex, which contains a digital signal output. It incorporates a capacitive humidity 
sensor and a thermistor to measure the surrounding air, providing digital signal output on 
the data pin and requiring no analog input pins. The sensor is reliable for humidity 
readings between 20-80% with an accuracy of 5%, while its temperature readings are 
accurate within 0-50°C with a deviation of ±2°C. Although the DHT11 is 
straightforward to use, it necessitates precise timing for data acquisition. Typical 
applications of the DHT11 are often seen with Arduinos, which have built-in libraries for 
data parsing. Integrating this sensor with the PSoC platform would involve writing 
specific code to handle the sensor's digital output and timing requirements.  

DHT11 uses only one wire [Data] for communication. The voltage level with a certain 
time value defines the logic one or logic zero on this pin. The communication process is 
divided in three steps, first is to send a request to the DHT11 sensor then the sensor will 
send a response pulse and then it starts sending data of total 40 bits to the 
microcontroller.  

Communicating Between PSoC Stick [Weather Station] and 
DHT11 

In the Top Design, the Data pin is set to be a bidirectional pin in order to read the sensor 
values and write the pulses to communicate with the DHT11. In order to communicate 
between the DHT11 and the PSoC Stick, the PSoC Stick sends a start pulse to the 
DHT11 that pulls the Data pin to low for a minimum of 18ms and then pulls up. In order 
to compensate for timing issues, the PSoC sends a start pulse of 20ms instead to ensure 
that the Data recognizes that communication has been initiated. After getting the start 
pulse from the PSoC, the DHT11 sensor sends the response pulse which indicates that 



DHT11 received the start pulse. The response pulse is low for 54us and then goes high 
for 80us. The PSoC counts for these pulses in order to begin collecting data from the 
DHT11. After sending the response pulse, the DHT11 sensor sends the data, which 
contains humidity and temperature value along with checksum. The data frame is of total 
40 bits long, it contains 5 segments (byte) and each segment is 8-bit long. 

In these 5 segments, the first two segments represent humidity value in decimal integer 
form, giving Relative Percentage Humidity. The first 8 bits are for the integer part, and 
the next 8 bits are for the fractional part. The next two segments contain temperature 
value in decimal integer form, providing temperature in Celsius. The last segment is the 
checksum, holding the checksum of the first four segments. For the purpose of this project, 
only the integer value for the temperature and humidity reading is used. Another 
important component of the DHT11 is that data is obtained every 2 seconds, so between 
sending pulses to the DHT11 to receive new data, a 2 second delay must be made in order 
to ensure accurate readings. 

 

 

 

 

 

 
 
 



TFT Display 

Setting Up TFT Display 

In order to read the data that is read from the DHT11 sensor, the temperature and 
humidity readings were stored and displayed on a TFT Display. The TFT was wired on a 
breadboard using the schematic that Professor Leeb sent out. The reasoning behind 
wiring the TFT on the separate breadboard was to facilitate easier changes for switching 
the TFT display between the PSoC stick and the PSoC big board. The TFT also acted as 
a debugging tool, since the temperature and humidity values were not displayed locally on 
a terminal. In terms of displaying the values, the EmWin Graphic Library was used. 

 

 

 

 

 

 



Bluetooth Module [HC-05] 

After the data collected on the DHT11 was verified when it displayed on the TFT screen, 
the HC-05 Bluetooth Module was incorporated to connect the PSoC Stick [Weather 
Station] to the PSoC Big Board [Base Station]. The original proposal called for the 
HC-06 Bluetooth Module; however, the module cannot be a host, so the module was 
switched to the HC-05 instead. The bluetooth HC-05 module was set up through the 
RS232 bridge of the PSoC Big Board and communication with the HC-05 was done 
through typing to Tera Term through COM port connection on the Big Board. The HC-05 
module had 5 pins: VCC, GND, RX, TX, and EN.  

Setting Up HC-05 Host and Receiver 

In order to set up the HC-05 to be a host host, the EN had to be set to HIGH in order to 
put the HC-05 in AT mode. In order for the HC-05 Host and the HC-05 Receiver to 
communicate to each other, both were set up to have a Baud rate of 38400. Then, through 
following the AT commands for pairing two HC-05 modules, they were configured and 
paired together when both are supplied with power. In orderThe pairing between the two 
modules was confirmed because sending a message on the Tera Term Host HC-05 will 
send the message on the Receiver HC-05 Module. 

Sending Data from HC-05 Host to Receiver 

After the HC-05 modules have been paired with each other, the EN pin was removed from 
each to ensure they can communicate to each other. The Host HC-05 was wired to the 
PSoC stick; however, the PSoC stick runs on 5V while the RX and TX lines of the HC-05 
module uses 3.3V logic, so a voltage divider was used to ensure 3.3V goes to the RX and 
TX lines of the HC-05 module. The data was sent through UART communication between 
the two PSoCs. 

 



Button to Change Display 

The last component of the Base Station is to change the display of the data with a button. 
Instead of adding additional buttons to the Base Station [PSoC Big Board], the 
preexisting buttons of the PSoC Big Board are used to change the display of the TFT 
screen. The PSoC big board uses a state machine to change between different display 
states and waits for a signal from the button to change the state of the display. In addition 
to the display that showcases the numerical values of temperature and humidity, a graph 
display was added to showcase how temperature and humidity changes over time. The 
graph display was created using the GRAPH library and the WM library from EmWin. 

 

 

 

 

Final Product!! 
Weather Station         ​​ ​                     Base Station  



 

 

 

Code 

WEATHER STATION 
/* ======================================== 
 * 
 * Copyright YOUR COMPANY, THE YEAR 
 * All Rights Reserved 
 * UNPUBLISHED, LICENSED SOFTWARE. 
 * 
 * CONFIDENTIAL AND PROPRIETARY INFORMATION 
 * WHICH IS THE PROPERTY OF your company. 
 * 
 * ======================================== 
*/ 
#include <project.h> 



#include "GUI.h" 
#include "tft.h" 
#include "stdio.h" 
#include "stdlib.h" 
 
void MainTask(void); 
 
int DHTread(); 
 
static int temperature=99; 
static int humidity=99; 
uint8 bits[5];  
int DHTread()  
{      
   int i; 
   uint8 Istate; 
   Istate=CyEnterCriticalSection();   
   //uint8 bits[5];  
   uint8 cnt = 7;  
uint8 idx = 0;  
   int   calc=0;  
   int   timeout=0;  
   for (i=0; i< 5; i++)   
       bits[i] = 0;  
   DHT_Write(0u);  
   CyDelay(19);  
   DHT_Write(1u);  
   while(DHT_Read()==1)  
   {  
       timeout++;  
       if(timeout>500)  
           goto r99;  //DHT error function  
   }  
   while(DHT_Read()==0)  
   {          
       timeout++;  
       if(timeout>500)  
           goto r99; //DHT error function  
   }  
   calc=timeout;  
   timeout=0;  
   while(DHT_Read()==1);  
   for (i=0; i<40; i++)  
​ {  



       timeout=0;  
       while(DHT_Read()==0);  
       while(DHT_Read()==1)  
           timeout++;  
       //Data acquiring point  
       if ((timeout) > (calc/2))  
           bits[idx] |= (1 << cnt);  
       if (cnt == 0)   // check for next byte 
   ​ {  
   ​ ​ cnt = 7;    // restart at MSB  
   ​ ​ idx++;      // next byte!  
   ​ }  
   ​ else cnt--;  
   }  
   humidity    = bits[0];   
   temperature = bits[2];   
   CyExitCriticalSection(Istate);  
   CyDelay(1);  
   return 0;  
   r99:    //Goto label for error in DHT reading  
       humidity    = 99;   
       temperature = 99;   
       CyExitCriticalSection(Istate);  
       return 99;  
} 
 
int main() 
{ 
    CyGlobalIntEnable;                      // Enable global interrupts 
    SPIM_1_Start();                         // initialize SPIM component  
    UART_1_Start(); 
    GUI_Init();                             // initilize graphics library 
    GUI_Clear(); 
    GUI_SetFont(&GUI_Font8x16); 
    for(;;) { 
        DHTread(); 
        int i; 
        //write temp and humidity data to Base station 
        for (i=0; i < 2; i++ ) { 
            if(UART_1_ReadTxStatus() & UART_1_TX_STS_FIFO_NOT_FULL) { 
                uint8 sensorOutput[30] = {temperature, humidity}; 
                UART_1_WriteTxData(sensorOutput[i]); 
                CyDelay(10); 
            } 



        } 
 
        CyDelay(2000);  //Delay in milli seconds 
    } 
} 
 
/* [] END OF FILE */ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BASE STATION 
 
/* ======================================== 
 * 
 * Copyright YOUR COMPANY, THE YEAR 
 * All Rights Reserved 
 * UNPUBLISHED, LICENSED SOFTWARE. 
 * 
 * CONFIDENTIAL AND PROPRIETARY INFORMATION 
 * WHICH IS THE PROPERTY OF your company. 
 * 
 * ======================================== 
*/ 
#include <project.h> 



#include "GUI.h" 
#include "tft.h" 
#include "stdio.h" 
#include "stdlib.h" 
#include "GRAPH.h" 
#include "WM.h" 
 
 
uint8 temp = 0; 
uint8 humidity = 0;  
int displayState = 0; 
 
void numDisplay() { 
    //get humidity value from weather station 
    if(UART_1_ReadRxStatus() & UART_1_RX_STS_FIFO_NOTEMPTY) { 
        char humidityStr [40]; //init humidity string 
        UART_1_ClearRxBuffer();  
        humidity = UART_1_ReadRxData(); 
        GUI_DispStringAt("Humidity:", 85, 50); 
        sprintf(humidityStr, "%i%%RH", humidity); 
        GUI_DispStringAt(humidityStr,100,70); //display humidity on TFT 
    } 
    CyDelay(10); 
    //get temp value from weather station 
    if(UART_1_ReadRxStatus() & UART_1_RX_STS_FIFO_NOTEMPTY) { 
        char tempStr [40]; 
        UART_1_ClearRxBuffer(); //clear buffer get new data value 
        temp = UART_1_ReadRxData(); //get temp 
        GUI_DispStringAt("Temperature:", 70, 10); 
        sprintf(tempStr, "%i%cC", temp, 0xB0); 
        GUI_DispStringAt(tempStr,100,30); //display temp on TFT 
        //GUI_DispNextLine(); 
    } 
} 
 
short tempData[200]; 
short humidityData[200]; 
 
GRAPH_DATA_Handle hData; 
GRAPH_SCALE_Handle hScale; 
GRAPH_SCALE_Handle vScale; 
WM_HWIN hGraph; 
 
 



void graphTempDisplay(){ 
    //init arbituary data to make graph 
    const short data[23] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
    WM_MULTIBUF_Enable(1); 
    hGraph = GRAPH_CreateEx(10,10,216,180,WM_HBKWIN,WM_CF_SHOW, 
GRAPH_CF_GRID_FIXED_X,GUI_ID_GRAPH0); 
    //init graph info 
    GRAPH_SetGridDistX(hGraph,50); 
    GRAPH_SetGridDistY(hGraph,50); 
    GRAPH_SetVSizeX(hGraph,50); 
    GRAPH_SetGridVis(hGraph,1); 
    GRAPH_SetBorder(hGraph,20,15,5,5); 
    //create graph Object w appropriate scale 
    hScale = GRAPH_SCALE_Create(16, GUI_TA_RIGHT, GRAPH_SCALE_CF_VERTICAL, 
20); 
    GRAPH_AttachScale(hGraph, hScale); 
    vScale = GRAPH_SCALE_Create(8, GUI_TA_RIGHT, 
GRAPH_SCALE_CF_HORIZONTAL,40); 
    GRAPH_AttachScale(hGraph, vScale); 
    //attach data to graph 
    hData = GRAPH_DATA_YT_Create(GUI_DARKGREEN, 200,data, 23); 
    GRAPH_DATA_YT_SetAlign(hData, GRAPH_ALIGN_LEFT); 
    GRAPH_AttachData(hGraph, hData); 
 
    GUI_Delay(10u); 
    //collect temp values to display on TFT screen 
    int i; 
    for (i = 0; i < 200; i++) { 
        //get humidity value to store 
        if(UART_1_ReadRxStatus() & UART_1_RX_STS_FIFO_NOTEMPTY) { 
        UART_1_ClearRxBuffer(); 
        humidity = UART_1_ReadRxData(); 
        } 
        CyDelay(10); 
        if(UART_1_ReadRxStatus() & UART_1_RX_STS_FIFO_NOTEMPTY) { 
        UART_1_ClearRxBuffer(); 
        temp = UART_1_ReadRxData(); 
    } 
        //collect only temp values to display 
        tempData[i] = temp; 
    } 
    GRAPH_DATA_YT_Delete(hData); 
    hData = GRAPH_DATA_YT_Create(GUI_DARKGREEN,220,tempData,200); 
    GRAPH_DATA_YT_SetAlign(hData, GRAPH_ALIGN_LEFT); 



    GRAPH_AttachData(hGraph,hData); 
    GUI_Delay(10u); 
} 
 
void graphHumidityDisplay(){ 
    GUI_DispString("graph humidity"); 
} 
 
 
 
 
int main() 
{ 
    CyGlobalIntEnable;                      // Enable global interrupts 
    SPIM_1_Start();                         // initialize SPIM component 
    UART_1_Init(); 
    UART_1_Start(); 
    UART_1_ClearRxBuffer(); 
    GUI_Init(); 
    GUI_Clear(); 
    GUI_SetFont(&GUI_Font8x16); 
    int displayState = 0; 
    //go through state machine to display temp and humidity values 
    for(;;) { 
        if(!DisplayBtn_Read()) { 
            GUI_Clear(); 
            WM_DeleteWindow(hGraph); 
            while (!DisplayBtn_Read()){ 
            } 
            if(displayState==2) { 
                displayState = 0; 
            } else { 
                displayState += 1; 
            } 
        } 
 
        if (displayState == 0) { 
            numDisplay(); 
        } else if (displayState == 1) { 
            graphTempDisplay(); 
        } else if (displayState == 2) { 
            graphHumidityDisplay(); 
        } 
    } 



} 
 
 
/* [] END OF FILE */ 
 


	Weather Station with Real-Time Data Visualization 
	Introduction 
	Schematic 
	Temperature and Humidity Sensor [DHT11] 
	Introduction of DHT11 
	Communicating Between PSoC Stick [Weather Station] and DHT11 

	TFT Display 
	Setting Up TFT Display 

	Bluetooth Module [HC-05] 
	Setting Up HC-05 Host and Receiver 
	Sending Data from HC-05 Host to Receiver 

	Button to Change Display 
	 
	Final Product!! 
	 
	Code 

